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Radiation field in a superstrong magnetoactive electron plasma

Chih-Kang Chou*
Institute of Astronomy and Department of Physics, National Central University, Chungli, Taiwan, Republic of China

~Received 26 March 1999!

Using the language of quantum field theory, we present a concise derivation for the electromagnetic vector
potentialAm , which is valid for an anisotropic superstrong magnetoactive electron plasma. It is shown that the
expression for the vector potentialAm can be reduced to various known limits. Applications to important
problems in astrophysics are briefly discussed. The relevance of our result to the recent development of the
collective interaction between intense neutrino fluxes and stellar plasmas is briefly stressed.
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PACS number~s!: 52.25.Jm, 51.60.1a, 52.35.Mw, 98.62.En
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I. INTRODUCTION

The role of strong magnetic field in high-energy ast
physics has attracted considerable theoretical interest
since the discovery of pulsars. It is now generally believ
that collapsed stellar objects such as dwarf stars and neu
stars are very likely to possess strong magnetic fields of
order of 108– 1012G a million times greater than laboratory
produced magnetic field.

The origin of ultrastrong magnetic fields in astrophysics
usually attributed to flux conservation during gravitation
collapse of magnetic stars@1#. Alternatively, intense mag
netic fields may be maintained in the interiors of neutr
stars either by Landau orbital ferromagnetism of the deg
rerate electrons@2# or by neutron ferromagnetism@2–5#.
Magnetic fields of the order of 1012G could be maintained in
the interiors of neutron stars if Landau orbital ferroma
netism of the electrons operates, whereas interior fields o
order of 1015G or greater may be generated if there is ne
tron ferromagnetism.

Primordial cosmic magnetic fields produced by dyna
mechanism in vector inflationary scenarios has been em
sized by Lewis@6# and Harrison@7#. Several alternative
mechanisms for primordial magnetic fields are discussed
Opher and Wichoski@8#. More recently Shuklaet al. @9#
have shown that the ponderomotive force of a nonunifo
intense neutrino beam can generate large-scale quasista
ary magnetic fields in a dense electron plasma. This me
nism can be responsible for the origin of magnetic fields
the early universe. Whereas the origin of these fields is
unclear and more or less speculative, we can contemp
studying the roles of these fields they play in high-ene
astrophysics.

Neutron stars are very quiet stars when compared w
ordinary stars where thermal nuclear reactions still ta
place; they are very cold, probably among the coldest pla
in the universe. The interior of the star is now believed to
a two-sphere solid configuration separated by a lubric
composed of superfluid neutrons. In the inner sphere, v
few electrons exist and matter is predominantly compose
interacting baryons. In the outer sphere~the crust! where
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density is relatively low, matter is primarily composed of
partially ionized plasma immersed in a superstrong magn
field. Thus, for the crust two main effects can be discern
One is related to the electrons treated as an independent
netoactive plasma, and the second has to do with the at
that constitute the bulk of the surface of the crust.

Atomic physics in ultrastrong magnetic fields was pu
sued by Ruderman@10# and Spruchet al. @11#. The effects of
the plasma have been considered to some extent by Ca
and Chou@12# by using an anisotropic pressure tensor d
rived from the Canuto-Chiu@13# equation of state for an
electron gas in a superstrong magnetic field.

Among the processes that are of primary importance
the thermal history of a neutron star are electron-posit
annihilation into neutrinos and photoneutrinos. The effects
a strong magnetic field on these processes have been st
by many authors@14–16#. More recently, the effect of super
strong magnetic field on electron capture has been em
sized by Dai, Lu, and Peng@17#.

In order to consider the effects of the magnetoactive e
tron plasma on the emission of photoneutrinos, it is nec
sary to know the proper form of the vector potentialAm ,
which is appropriate in the presence of the plasma and
magnetic field. The correct form ofAm has been given by the
author and extensively used by many authors@18–20#. Al-
though the derivation of the proper form ofAm has previ-
ously been given by Adams, Ruderman, and Woo@21# for an
isotropic plasma in the absence of external magnetic fie
and discussed by Melrose@22# for anisotropic magnetoactive
plasma, however, it seems to the best of my knowledge
the correct formulation for this simple but important proble
has never been published in the open literature. The role
strongly magnetoactive electron plasma is clearly enhan
in view of the very recent theoretical interest to study t
collective interactions between neutrinos and backgro
stellar plasmas@23–27#. The coupling between neutrinos an
plasmons occurs due to the weak Fermi interaction force@28#
involving neutrinos, bosons, and plasma electrons. More s
cifically, intense neutrino fluxes propagating through t
plasma perturb the electron number density through
Fermi interaction and thereby produce upper and low
energy-level neutrinos. The latter interact with the origin
neutrino flux to produce a low-frequency ponderomoti
force @25#, which reinforces the density perturbation
5998 © 1999 The American Physical Society
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PRE 60 5999RADIATION FIELD IN A SUPERSTRONG . . .
in the background plasma. Consequently, the original n
trino energy density is depleted and transferred to plas
waves which, in turn, heat the plasma electrons via Lan
damping.

Since there exist superstrong magnetic fields of the o
of several billion gauss at neutron star surface, it is neces
@26,27# to include the ambient magnetic fields in the theo
of collective interactions between neutrinos and stellar m
ter. The inclusion of homogeneous magnetic fields lead
such parametric excitations as whistlers andX-mode radia-
tion that can account for the ponderomotive force of the
tense neutrino fluxes. However, in all these investigatio
the background magnetoactive plasma has always b
treated by the standard method of classical plasma physic
is well known that for superstrong magnetic fields the mot
of the plasma electrons are quantized into Landau orbits@13#
so that the background plasma should be treated as a
netized electron gas by the methods of quantum mecha
It is our hope to extend the theory of nonlinear interactio
between neutrinos and stellar matter recently developed
Bethe@28#, Bingham@24,25#, and Shuklaet al. @26,27# such
that a full quantum-mechanical treatment is applied to b
the incident intense neutrino fluxes and the stellar plas
immersed in a superstrong magnetic field. More specifica
the theory developed by Shuklaet al. @9,26,27# and Bingham
et al. @24,25# for the nonlinear coupling between intense ne
trino fluxes and a dense magnetized plasma is a semiclas
theory in that the incident neutrino fluxes are governed b
nonlinear Klein-Gordon equation in relativistic quantum m
chanics. On the other hand. The variety of magneti
plasma waves that are driven by the neutrino energy den
are studied in the general framework of standard plas
physics.

As previously emphasized, we are now in the process
formulating a full quantum-theoretical treatment for the no
linear interaction between neutrinos and stellar plasmas
mersed in superstrong magnetic fields. As a first step in
endeavour, we consider the radiation fieldAm which is ap-
propriate to depict the magnetoactive stellar plasma
show that it can be reduced to various known limits. W
shall choose the gauge so that the scalar potentialA4
5 if) vanishes. We then quantizeAm in terms of the Max-
well operatorL i j @as defined by Eq.~26! of Sec. II# and the
annihilation and creation operators. Applications of our
sult to important astrophysical problems such as the neut
energy-lose rates due to Compton scattering in a relativ
magnetoactive plasma and the rich variety of plasma exc
tions driven by the nonlinear coupling between the neutr
fluxes and the stellar plasma previously mentioned will
presented in future publications.

II. PLASMA ENERGY DENSITY

Collective excitations in a plasma may be initiated by t
energy supply from an external source. The energy o
plasma wave appears in the electromagnetic field and in
charged-particle kinetic energy which is associated with
coherent wave motions. If the external supply of electrom
netic energy to the plasma is cut off, the absorption which
always present, no matter how small, will ultimately conv
the energy of the plasma into heat.
u-
a
u

er
ry

t-
to

-
s,
en
. It
n

ag-
cs.
s
by

h
a
,

-
cal
a
-
d
ity
a

of
-
-

ur

d

-
o

ic
a-
o
e

a
he
e
-

is
t

We turn now to consider the energy density for t
plasma. Maxwell’s equations may be written in the form

¹W 3EW 52
1

c

]BW

]t
, ¹W •DW 54prext, ¹W •BW 50,

¹3BW 5
4p

c
JW ext1

1

c

]DW

]t
, DW 5«J•EW 5EW 14pPW , ~1!

]DW

]t
54pJW ind1

]EW

]t
, JW ind5

]PW

]t
.

In the above equation,]DW /]t is the sum of the displace
ment current~caused by the change in the electric field! and

the internally induced currentJW ind , whereasJWext represents
the current density externally applied. With this form of th
Maxwell’s equations we then have

]

]t
S EW •DW 1BW •BW

8p
D 52¹W •S c

4p
EW 3BW D2JWext•EW

or

]W

]t
1¹W •SW 52JWext•EW . ~2!

If there is no external current,

]W

]t
52¹W •SW 5

1

4p
S BW •

]BW

]t
1EW •

]DW

]t
D . ~3!

We note that although Eqs.~2! and ~3! are rigorous at
every instant of time, our concern will be only in the avera
behavior of these equations over a period of time since
are not interested in transient effects. However, for the p
pose of studying wave motion in a plasma it is convenien

take the fieldsEW , BW , andDW to be complex and then substitu
for these fields their corresponding real values. Thus in

~3! we replaceEW and DW by 1
2 (EW 1EW * ) and 1

2 (DW 1DW * ), re-

spectively, and similarly forBW . The average energy densit
can now be rewritten in the form

^W&5
1

16p E dt$BW •BẆ * 1BW * •BẆ 1EW •DẆ * 1EW * •DẆ %, ~4!

where the productsEW •DẆ and BW * •BẆ * , etc., have been
dropped from Eq.~4! since their time average vanishes.

If the fields EW and BW are further assumed to be strict
monochromatic, i.e.,

EW 5EW 0e2 ivt, BW 5BW 0e2 ivt

with EW 0 andBW 0 independent of time, then

EW * •EW 5uEW 0u252^~ReEW !2&, BW * •BW 52^~ReBW !2&

and the energy density becomes
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^W&5
1

8p
$^~ReBW !2&1^~ReEW !2&%, ~5!

which is the usual expression for the electromagnetic ene
density.

In a dispersive medium such as the electron plasma~with
and without external magnetic field!, the situation is much
more complicated. The presence of arbitrary dispersion g
rise in general to energy dissipation, i.e., a dispersive
dium is also an absorbing medium. Thus, in a dispers
medium, energy must be supplied to maintain the collec
excitations and to overcome the dissipasive losses into h
The building-up of the waves and the dissipative losses
be represented by fields with a complex frequency. Bef
evaluating the time average of Eq.~3! for this case, let us
note that for monochromatic plane waves one has

^AW •BW &5^Re~AW 0e2 iw!•Re~BW 0e2 iw!&

5 1
4 ~AW 0•BW 0* 1AW 0* •BW 0!exp~2v i t ! ~6!

with w5vt, v5v r1 iv i , v r5Rev, v i5Im v.
The rate of change of the energy density may now

calculated by applying Eq.~6! to Eq. ~3!. To calculatê ẆE&
we note that

^ẆE&5 K ]WE

]t L 5
1

4p
K EW •

]DW

]t
L

5 1
4 $v* EW 0•DW 0* 2vEW 0* •DW 0%e

2 i ~w2w* !

5 1
4 $v rEW 0* •~ «J12«J !•EW 0

2 iv iEW 0* •~ «J11«J !•EW 0%e
2v i t, ~7!

where«J1 is the Hermitian conjugate of«J,

« i j
15~ «̃ i j !* 5« j i* ,

that is, the complex conjugate of the transposed matrix,
where we have used the relation

EW 0•«J* •EW 0* 5EW 0* •«J1
•EW 0 .

Similarly, from Eq.~3! we have

K ]WB

]t L 5K BW •
]BW

]t
L 5 1

4 BW 0* •BW 0~v* 2v!exp@2 i ~w2w* !#

5 1
4 $2v iBW 0* •BW 0 exp~2v i t !% ~8!

so that the time-averaged total energy density becomes

K ]W

]t L 5
1

16p
$2v iBW 0* •BW 01v iEW 0* •~ «J11«J !•EW 0

1 iv rEW 0* •~ «J12«J !•EW 0%e
2v i t. ~9!

The above equation represents the rate at which en
must be supplied to build up the collective excitations and
overcome the dissipative losses into heat. For a loss
y
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plasma in the steady state]W/]t50,v i50. It follows from
Eq. ~9! that the necessary and sufficient condition for a lo
free plasma is that the dielectric tensor must be Hermiti
namely,«J15«J. On the other hand, ifv i50, and the dielec-
tric tensor is not Hermitian«J1Þ«J, then^]W/]t& gives di-
rectly the heat loss rate, i.e.,

Q5 K ]W

]t L
v i50

5 iv rEW 0* •~ «J12«J !•EW 0/16p

5 iv rEW 0* •«Ja•EW 0/8p, ~10!

where«Ja is the anti-Hermitian part of the dielectric tenso
For the simplest case of an isotropic dispersive medium

which the dielectric tensor is a scalar« i j 5«d i j , Eq. ~10!
reduces to

Q5 iv rEW 0* •EW 0~2 i Im «!/8p5^~ReEW !2&v r Im «/4p.
~11!

Equation~11! shows that the dissipation~absorption! of
energy is determined by the imaginary part of«. According
to the law of increase of entropy, the sign of these heat los
is determinate, i.e.,Q.0, and consequently

Q.0, Im«.0. ~12!

In a loss-free plasma,«J15«J, the averaged electrostati
energy density may be written as

WE5E dtK ]WE

]t L 5
1

16p E dt « i j FEj

]

]t
Ei* 1Ei*

]

]t
Ej G

5
1

16p
« i j E dt

]

]t
~Ei* Ej !5

1

8p
« i j ^Re~Ei* Ej !& ~13!

provided the fieldEW is monochromatic.
It is easy to see that even for the simplest case of

isotropic electron plasma at zero temperature for which« i j

5(12vp
2/v2)d i j , Eq. ~13! can become negative; in fact,

WE5
1

8p S 12
vp

2

v2D ^~ReEW !2&,0 for v,vp . ~14!

This unphysical result is due to the fact that so far we ha
considered only monochromatic waves of a single frequen
As was emphasized by Landau, for strictly monochroma
fields there is no steady accumulation of electromagnetic
ergy. To remove this difficulty we therefore consider no
strictly monochromatic fields with frequencies in a narro
range about the mean valuev0 of the carrier. Taking the

Fourier transform ofEW (t) we have

EW ~ t !5E
2`

`

dv EW ~v!exp~2 ivt !, ~15!

where EW (v) is assumed to have a sharp maximum atv
5v0 .

Equation ~15! may be rewritten in a more transpare
form by performing a simple change of variable,
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EW ~ t !5e2 iv0tE
2`

`

da EW ~v01a!e2 iat5e2 iv0tEW 0~ t !.

~16!

The field amplitude in Eq.~16! is now a slowly varying
function of time. Similarly the fieldD takes the form
al
D~ t !5E
2`

`

dv «J~v!•EW ~v!e2 ivt

5e2 iv0tE
2`

`

da «J~v01a!•EW ~v01a!e2 iat. ~17!

SinceEW 0(t) is assumed to be a slowly varying function
time so thata!v0 , we can expand the dielectric tensor in
power series ofa and retain the first term only,
DW ~ t !5e2 iv0tE
2`

`

daF «J~v0!1a
]«J

]vU
v5v0

1¯G•EW ~v01a!e2 iat

5«J~v0!•e2 iv0tEW 0~ t !1e2 iv0t
]«J

]vU
v5v0

•E
2`

`

a da e2 iatEW ~v1a!

5«J~v0!•EW ~ t !1 ie2 iv0t
]«J

]vU
v5v0

•

]EW 0~ t !

]t
, ~18!
ian

f

where we have used

]

]t
EW 0~ t !5

]

]t E2`

`

da e2 iatEW ~v01a!

52 i E
2`

`

a da e2 iatEW ~v01a!.

Differentiation of Eq.~18! with respect to time then yields

]DW

]t
5«J~v0!•H 2 iv0EW ~ t !1e2 iv0t

]EW 0~ t !

]t
J

1 i
]«J

]vU
v5v0

•F2 iv0

]EW 0~ t !

]t
1

]2

]t2 EW 0~ t !Ge2 iv0t

52 iv0«J~v0!•EW 1F ]

]v
@v«J~v!#G

v5v0

•e2 iv0t
]EW 0~ t !

]t
,

~19!

where we have neglected the term]2EW 0(t)/]t2 which is sec-
ond order in the small frequencya. Using Eqs.~16!–~19! in
Eq. ~4! we obtain the following expression for the electric
part of the electromagnetic energy density:
^WE&5
1

16p E dtH EW •F iv«J1~v!•EW *

1
]

]v
~v«J1!•eivt

]EW 0*

]t
G

1EW * •F2 iv«J•EW 1
]

]v
~v«J !•e2 ivt

]EW 0

]t
G J ,

~20!

where the subscript in the mean frequencyv0 has been
dropped.

For a loss-free plasma, the dielectric tensor is Hermit
so that

«J15«J

and

EW •«J1
•EW * 5EW * •«J•EW .

Equation~20! then reduces to

^WE&5
1

16p

]

]v
~v« i j !E dt

]

]t
~E0i* E0 j !

5
1

16p

]~v« i j !

]v
~E0i* E0 j !, ~21!

where we have used Eq.~16!. Similarly, the magnetic part o
the total energy density may be shown to be
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^WB&5
1

16p
B0i* B0i . ~22!

It is to be noted that the fieldsEW 0 ,BW 0 are now slowly varying
functions of time. The total electromagnetic energy densit
therefore given by

^W&5
1

16p FBi* Bi1Ei*
]~v« i j !

]v
Ej G . ~23!

From Maxwell’s equations we readily obtain

BW 5
c

v
kW 3EW , kW3BW 52

v

c
«J•EW ,

so that

Bi* Bi5Ei* « i j Ej . ~24!

Using Eq.~24! in Eq. ~23!, we have

^W&5
1

16p
Ei* EjF« i j 1

]

]v
~v« i j !G5

Ei* Ej

16pv

]~v2« i j !

]v
.

~25!

We will now rewrite Eq.~25! in terms ofL, the determinant
of the operatorL i j . To do this we note that

L i j Ej[ bn2~ki j 2d i j !1« i j cEj50,

or

n2~d i j 2ki j !Ej5« i j Ej ,

with

ki j [kikj /k2, ~26!

wheren[ck/v is the plasma index of refraction.
Consider now

]

]v
~vL i j !5L i j 1v

]L i j

]v
5« i j 1n2~ki j 2d i j !1v

]L i j

]v

5« i j 1n2~ki j 2d i j !1v
]« i j

]v
22n2~ki j 2d i j !

5n2~d i j 2ki j !1
]~v« i j !

]v
~27!

since

]

]v
n2522n2/v.

It then follows from Eq.~27! that

Ei* Ej

]

]v
~vL i j !5Ei* H ]

]v
~v« i j !1n2~d i j 2ki j !J Ej

5Ei* Ej

1

v

]

]v
~v2« i j !, ~28!

where we have used Eq.~26!.
is

Combining Eqs.~25! and ~28!, we have

^W&5
1

16p
Ei* Ej

1

v

]

]v
~v2« i j !

5
1

16p
Ei* Ej

]

]v
~vL i j !5

1

16p
uEu2

l i j

l0

]

]v
~vL i j !,

~29!

where we have used the relation

l i j 5l0ei* ej5l0Ei* Ej uEu22

in the last step. In the above formulal0 is the trace of the
cofactor matrixl i j of Maxwell’s operatorL i j , andei is the
polarization vector. Now

l i j

]

]v
~vL i j !5l i j FL i j 1v

]L i j

]v G
5l i j L i j 1vl i j

]L i j

]v
53L1v

]L

]v
5v

]L

]v
,

~30!

since for any real mode the determinate of Maxwell’s ope
tor ~written in matrix notation! vanishes, i.e.,L50, and

]L

]v
5l i j

]

]v
L i j ,

which can be easily shown by direct differentiation of

L[detL i j 5L i j l i j

with respect tov. From Eqs.~29! and~30! we finally obtain

^W&5
uEW u2

16p

l i j

l0
FL i j 1v

]L i j

]v G
5

uEW u2

16p

v

l0

]L

]v
5

1

8p
~ReEW !2

v

l0

]L

]v
, ~31!

which is the desired result.

III. THE VECTOR POTENTIAL

We are now ready to derive an expression for the vec
potential which is valid in a magnetoactive plasma. Such
expression is extremely useful for astrophysical applicatio
because some of the most important astrophysical quant
such as the radiative opacities and luminosities can be ca
lated most conveniently in terms of the vector potential.
knowledge of the radiative opacities is absolutely essen
for the description of the energy transfer in stellar interio
and, on the other hand, in order to calculate the surface t
perature and cooling rates of stars as well as stellar ev
tion, one needs to known the stellar energy-loss rates du
the radiation of photons and neutrinos. Since most of th
radiation processes occur in a magnetized plasma, it is o
ous that a general expression for the vector potential wh
takes into account plasma effects is of great interest.

Turning now to the mathematical details, let us repres
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the electromagnetic field in a magnetized plasma by the fo

potentialAm(AW ,if), and choose the gauge such thatf50.

The vector potentialAW (xW ,t), which is real, can be expande
in the form

AW ~xW ,t !5 (
kW ,a51,2

$UW KW ,a~xW !e2 ivtak,a1UW
kW ,a
* ~xW !eivtak,a

† %

~32!

UW kW ,a~xW !5uUW kW ,aueikW•xWêk,a ,

whereak,a andak,a
† are the annihilation and creation oper

tors for a plasmon with wave vectorkW and direction of po-
larization along the unit vectorêk ; a denotes such a direc

tion. The coefficientuUW k,au is then determined by quantizin
the electromagnetic fields. To do this, we note that fon
plasmons per unit volume, the average energy density^Wa&
of the radiation field is given by Eq.~31!,

^Wa&5
1

8p
^uReEW au2&

v

l0

]

]v
L,

5na\v ~33!

where the electric field is obtained from the vector poten

EW 52
1

c

]AW

]t
. ~34!

From Eqs.~32!, ~33!, and~34! we have

AW k,a~xW ,t !52uUW kW ,auêk,a cos~kW•xW2vt !

^Ẇa&5
1

8p K 1

c2 F ]

]t
~ReAW !G2L

t

v

l0

]L

]v

5
1

8pc2 ^@2uUW kW ,auv#2sin2~kW•xW2vt !&t

v

l0

]L

]v
r-

l

5
1

8pc2 F4v2UUW kW ,aU2S 1

2D G v

l0

]L

]v

5na\v5
Na

V
\v , ~35!

which yields

uUW kW ,au5S 2p\2c2Na

~\v!V D 1/2S 2l0

v
]L

]v
D 1/2

. ~36!

In Eq. ~36!, V is the normalization volume in which there a
Na plasmons~i.e., na5Na /V). The subscriptt in Eq. ~35!
indicates that the time average is taken over one period
that

^sin2~kW•xW2vt !&t5 1
2 .

The plane-wave expansion of the vector potential is there

AW ~xW ,t !5(
kW

(
a51,2

Nv
1/2$ei ~kW•xW2vt !akW ,a1e2 i ~kW•xW2vt !ak,a

1 %êkW ,a,

Nv5S 2p\c2

Vv D S 2l0

v
]L

]v
D 5

2p\2c2

Evv
z~v! , ~37!

Ev5\v, v5v~k!,

where we have assumed that there is one plasmon in
volume V so thatna5(Na /V)5(1/V). We note that the
factor z(v) in Eq. ~37! represents the effect of the plasm
whereas the factor 2p(\c)2/EvV is simply the vacuum
limit for the vector potential.

To illustrate the usefulness of Eq.~37!, let us compute
z(v) for transverse waves in a nonmagnetized elect
plasma for which the Maxwell matrixL i j and its associated
cofactor matrixl i j may be written as

L i j 5F P2n2 cos2 u 0 n2 sinu cosu

0 P2n2 0

n2 sinu cosu 0 P2n2 sin2 u
G , ~38!
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l i j 5F ~P2n2!~P2n2 sin2 u! 0 ~P2n2!n2 sinu cosu

0 P~P2n2! 0

~P2n2!n2 sinu cosu 0 ~P2n2!~P2n2 cos2 u!
G , ~39!
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whereu is the angle between the wave vectorkW and theZ
axis, withky50, i.e., „n5ck/v,P512(vP

2 /v2)…,

kW5~kx,0,kz!5k~sinu,0,cosu!.

From Eqs.~38! and~39! the factorz(v) may be evaluated a
follows:

z~v!52
l0

v
]L

]v

5
2Tr~l i j !

v
]

]v
iL i j i

or

v

2
z~v!5

~P2n2!~3P2n2!

]

]v
@P~P2n2!2# U

n25P

5
1

]P

]v
1

2P

v

.

Hence

z~v!5
2

v

1

2P

v
1

]P

]v

5
2

2P1v
]P

]v

5
2

2n21v
]

]v
n2

5
1

n
]

]v
~vn!

, ~40!

where we have used L’Hospital’s rule and the dispers
relationn25P for transverse plasmons.

Similarly, for longitudinal plasmons it can be easi
shown that

l0
l 5Tr l i j

l 51, L[det~L i j
l !5P,

where the superscriptl indicates longitudinal waves. In thi

caseê5 k̂ and the dispersion relation is simplyP50 or v
5vp . The factorz(v) may now be evaluated to give

z~v!5
2l0

l

v
]L

]v

5
2

v
]P

]v

5
v2

vp
2 ~41!

or

z~v!51.
n

Equations~40! and~41! are used by Adams, Ruderman, a
Woo @21# for computing the neutrino energy-loss rates
plasmon neutrino processes, which are important for
stage stellar evolution. The general expressionz(v) is also
applicable in a magnetoactive plasma, for instance Can
et al. @15# have considered the photoneutrino process i
strong magnetic field and the same process in a magnet
tive electron plasma has been investigated by Chou, Fas
Canuto, and Canuto@20#.

We note that in the absence of the plasma,n5ck/v51
and Eq.~40! givesz(v)51 so that

Nv5
2p\2c2

EvV
z~v!5

2p\c2

Vv
,

which is simply the vacuum limit for the vector potential. I
other words, we recover the electromagnetic waves
vacuum.

IV. THE COLLISIONLESS COLD PLASMA MODEL

The possible modes of excitation for a strongly magn
tized electron plasma have been investigated by severa
thors @12,29# and discussed by Canuto, Chiuderi, and Ch
@18,19# in connection with the plasmon neutrino proces
This excitation frequency has also been used to compute
photoneutrino luminosity for transverse plasmons by Ch
Fassio-Canuto, and Canuto@20#. To simplify our analysis,
we make few approximations to obtain explicit function
forms for the excitation frequencies. We neglect both spa
dispersion due to electron pressure for an electron ga
arbitrary degeneracy and the effects of spin and collisions
the dielectric tensor. The effect of spatial dispersion has b
shown by Adams, Ruderman, and Woo@21# to be unimpor-
tant in the high-density regime such as the interiors of n
tron stars and dwarf stars, whereas the spin effects on
dielectric tensors are negligible@30#. In a superstrong mag
netoactive electron plasma, the cyclotron frequency is
high that particle correlation is due to magnetic fields rat
than collisions: hence the effects of collisions on the diel
tric tensor can also be neglected.

We will now compute the normalization factorz previ-
ously derived for the collisionless cold plasma model. It
anticipated that the normalization factor will appear in t
quantum-mechanical treatment for the nonlinear interac
between intense neutrino fluxes and a magnetoactive elec
plasma background. In view of the approximations del
eated above for the plasma immersed in superstrong m
netic fields, we shall therefore proceed to compute the n
malization factor for a cold collisionless plasma model.
the notation of Stix@31#, the dielectric tensor can be writte
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« i j 5F S 2 iD 0

iD S 0

0 0 P
G ,

S5 1
2 ~R1L !, D5 1

2 ~R2L !, P512
vp

2

v2 , vc5
eB

mc
,

~42!

R512
vp

2

v~v2vc!
, L512

vp
2

v~v1vc!
, vp

25
4pNe2

m
,

whereN is the electron number density andvp is the plasma
frequency. The index of refraction satisfies the biquadra
equation

An42Bn21C50,

A[Ssin2 u1P cos2 u,
~43!

B5RL sin2 u1SP~11cos2 u!,

C5RPL.

The solutions are given by

n25
B6F

2A
, F25B224AC.

Equation~43! can be cast in a more transparent form@32,33#,

tan2 u52
P~n22R!~n22L !

~Sn22RL!~n22P!
, ~44!

which shows that for propagation along the magnetic fi
u50 we have eithern0

25R for the ordinary modeO or nx
2

5L for the extraordinary modeX. Similarly, for propagation
across the magnetic field (u5p/2) we have the ordinary
mode n0

25P and the extraordinary modenx
25RL/S. The

latter, being a linearly polarized mixed mode, is partia
transverse and partially longitudinal. It can be easily sho
that Tr(l i j ) is given by
ev
ic

d

n

Tr~l i j !5n42~P1A12S!n21RL12PS.

The general form of the polarization vectore has been
considered by Melrose, whose result is

ei5
l i j Cj

@Ci* l i j CjTr~l i j !#
1/2.

The index l specifying the various modes of excitation
implicitly contained inl i j through the index of refractionnl .
The constant parametersCj are a set of complex number
with the constraint that one of them should not vanish. Let
choose

CW 5~0,i ,0!.

We then obtain after some straightforward computation

ei5@11Gl
2#21/2H D~P2nl

2 sin2 u!

SP2Anl
2 ,i ,

2Dnl
2 sinu cosu

SP2Anl
2 J ,

~45!

Gl5
PD cosu

SP2Anl
2 .

It follows that

U Tr~l i j !

]iL i j i /]n2 U
iL i j i50

5U n42~P1A12S!n21~RL12SP!

6F U,
~46!

since 2An22B56F.
Equation~46! is the desired general result for the norma

ization factor z(v) for a cold collisionless magnetoactiv
electron plasma. As previously emphasized, this factor is
pected to appear in a full-fledged quantum-mechanical
scription for the nonlinear interaction between intense n
trino fluxes and stellar plasma background immersed i
superstrong magnetic field.
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