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Radiation field in a superstrong magnetoactive electron plasma
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Using the language of quantum field theory, we present a concise derivation for the electromagnetic vector
potentialA,, , which is valid for an anisotropic superstrong magnetoactive electron plasma. It is shown that the
expression for the vector potentidl, can be reduced to various known limits. Applications to important
problems in astrophysics are briefly discussed. The relevance of our result to the recent development of the
collective interaction between intense neutrino fluxes and stellar plasmas is briefly stressed.
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I. INTRODUCTION density is relatively low, matter is primarily composed of a
partially ionized plasma immersed in a superstrong magnetic
The role of strong magnetic field in high-energy astro-field. Thus, for the crust two main effects can be discerned.
physics has attracted considerable theoretical interest ev@ne is related to the electrons treated as an independent mag-
since the discovery of pulsars. It is now generally believedhetoactive plasma, and the second has to do with the atoms
that collapsed stellar objects such as dwarf stars and neutrahat constitute the bulk of the surface of the crust.
stars are very likely to possess strong magnetic fields of the Atomic physics in ultrastrong magnetic fields was pur-
order of 16—10"*G a million times greater than laboratory- sued by Rudermaji0] and Spructet al.[11]. The effects of
produced magnetic field. the plasma have been considered to some extent by Canuto
The origin of ultrastrong magnetic fields in astrophysics isand Chou[12] by using an anisotropic pressure tensor de-
usually attributed to flux conservation during gravitationalrived from the Canuto-Chiji13] equation of state for an
collapse of magnetic stafd]. Alternatively, intense mag- electron gas in a superstrong magnetic field.
netic fields may be maintained in the interiors of neutron Among the processes that are of primary importance for
stars either by Landau orbital ferromagnetism of the degerthe thermal history of a neutron star are electron-positron
rerate electrong2] or by neutron ferromagnetisif2—5|. annihilation into neutrinos and photoneutrinos. The effects of
Magpnetic fields of the order of 30G could be maintained in a strong magnetic field on these processes have been studied
the interiors of neutron stars if Landau orbital ferromag-by many author§14—16. More recently, the effect of super-
netism of the electrons operates, whereas interior fields of thetrong magnetic field on electron capture has been empha-
order of 18°G or greater may be generated if there is neu-ssized by Dai, Lu, and Pend.7].
tron ferromagnetism. In order to consider the effects of the magnetoactive elec-
Primordial cosmic magnetic fields produced by dynamotron plasma on the emission of photoneutrinos, it is neces-
mechanism in vector inflationary scenarios has been emphaary to know the proper form of the vector potentfg|,
sized by Lewis[6] and Harrison[7]. Several alternative which is appropriate in the presence of the plasma and the
mechanisms for primordial magnetic fields are discussed bynagnetic field. The correct form &, has been given by the
Opher and Wichosk[8]. More recently Shuklaet al. [9]  author and extensively used by many authd8-20. Al-
have shown that the ponderomotive force of a nonunifornthough the derivation of the proper form éf, has previ-
intense neutrino beam can generate large-scale quasistatiarusly been given by Adams, Ruderman, and W21 for an
ary magnetic fields in a dense electron plasma. This mechasotropic plasma in the absence of external magnetic fields,
nism can be responsible for the origin of magnetic fields inand discussed by Melro$22] for anisotropic magnetoactive
the early universe. Whereas the origin of these fields is stilplasma, however, it seems to the best of my knowledge that
unclear and more or less speculative, we can contemplatée correct formulation for this simple but important problem
studying the roles of these fields they play in high-energyhas never been published in the open literature. The role of a
astrophysics. strongly magnetoactive electron plasma is clearly enhanced
Neutron stars are very quiet stars when compared witlin view of the very recent theoretical interest to study the
ordinary stars where thermal nuclear reactions still takecollective interactions between neutrinos and background
place; they are very cold, probably among the coldest placestellar plasmag23—27. The coupling between neutrinos and
in the universe. The interior of the star is now believed to beplasmons occurs due to the weak Fermi interaction ffi26¢
a two-sphere solid configuration separated by a lubricaninvolving neutrinos, bosons, and plasma electrons. More spe-
composed of superfluid neutrons. In the inner sphere, veryifically, intense neutrino fluxes propagating through the
few electrons exist and matter is predominantly composed gflasma perturb the electron number density through the
interacting baryons. In the outer sphettee crust where  Fermi interaction and thereby produce upper and lower
energy-level neutrinos. The latter interact with the original
neutrino flux to produce a low-frequency ponderomotive
*Electronic address: Chou@joule.phy.ncu.edu.tw force [25], which reinforces the density perturbations
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in the background plasma. Consequently, the original neu- We turn now to consider the energy density for the
trino energy density is depleted and transferred to plasmplasma. Maxwell's equations may be written in the form
waves which, in turn, heat the plasma electrons via Landau

damping. . . 1B . - .
Since there exist superstrong magnetic fields of the order VXE=—c = V-D=47peq, V-B=0,
of several billion gauss at neutron star surface, it is necessary
[26,27] to include the ambient magnetic fields in the theory
of collective interactions between neutrinos and stellar mat- VXB= A'_Wﬁexﬁ 1D . D=&-E=E+47P, (1)
ter. The inclusion of homogeneous magnetic fields leads to c c ot
such parametric excitations as whistlers afichode radia-
tion that can account for the ponderomotive force of the in- 9D . 9E . P
tense neutrino fluxes. However, in all these investigations, ot = Amdinat oo Jina=

the background magnetoactive plasma has always been

treated by the standard method of classical plasma physics. It In the above equatiorazlﬁ/at is the sum of the displace-

is well known that for superstrong magnetic fields the motion . .
of the plasma electrons are quantized into Landau orb86 ment curren{caused by the cbange in the i:-lectnc Hedend

so that the background plasma should be treated as a maipe internally induced currenl;,q, whereasJe, represents
netized electron gas by the methods of quantum mechanicte current density externally applied. With this form of the
It is our hope to extend the theory of nonlinear interactiondMaxwell’s equations we then have

between neutrinos and stellar matter recently developed by

Bethe[28], Bingham[24,25, and Shukleet al.[26,27] such J|E-D+B-B O R

that a full quantum-mechanical treatment is applied to both s\ T8 )T V| 7-EXB|"JexE

the incident intense neutrino fluxes and the stellar plasma

immersed in a superstrong magnetic field. More specificallyor

the theory developed by Shulkéa al.[9,26,27 and Bingham

et al.[24,25 for the nonlinear coupling between intense neu- oW . . .

trino fluxes and a dense magnetized plasma is a semiclassical y +V-5=—Jex E. (2

theory in that the incident neutrino fluxes are governed by a
nonlinear Klein-Gordon equation in relativistic quantum me- -
chanics. On the other ﬂand. The variety o?‘ magnetizecslc there is no exteral current,
plasma waves that are driven by the neutrino energy density
are studied in the general framework of standard plasma o
physics. dt
As previously emphasized, we are now in the process of .
formulating a full quantum-theoretical treatment for the non-  We note that although Eq#2) and (3) are rigorous at
linear interaction between neutrinos and stellar plasmas infVery instant of time, our concern will be only in the average
mersed in superstrong magnetic fields. As a first step in odp€havior of these equations over a period of time since we
endeavour, we consider the radiation fielg which is ap- are not interested in transient effects. However, for the pur-

propriate to depict the magnetoactive stellar plasma an8#0S€ Of studying wave motion in a plasma it is convenient to
show that it can be reduced to various known limits. Wetake the field€, B, andD to be complex and then substitute

shall choose the gauge so that the scalar potenfigl ( for these fields their corresponding real values. Thus in Eqg.
=i¢) vanishes. We then quantize, in terms of the Max-  (3) we replaceE andD by (E+E*) and }(D+D*), re-

well operatorA;; [as defined by Eq26) of Sec. If and the spectively, and similarly foB. The average energy densit
annihilation and creation operators. Applications of our re—CEln now){)'e rewritten ir¥the form 9 9y y
sult to important astrophysical problems such as the neutiond

energy-lose rates due to Compton scattering in a relativistic 1 R,
magnetoactive plasma and the rich variety of plasma excita- (W)= FJ dt{B-B*+B*-B+E-D*+E*-D}, (4)
tions driven by the nonlinear coupling between the neutrino m

fluxes and the stellar plasma previously mentioned will be R - -
presented in future publications. where the productsE-D and B*-B*, etc., have been

dropped from Eq(4) since their time average vanishes.

I the fields E and B are further assumed to be strictly
monochromatic, i.e.,

Collective excitations in a plasma may be initiated by the - . - .
energy supply from an external source. The energy of a E=Ege ', B=Bge '
plasma wave appears in the electromagnetic field and in the =~ _ _
charged-particle kinetic energy which is associated with thevith E, and B, independent of time, then
coherent wave motions. If the external supply of electromag-
netic energy to the plasma is cut off, the absorption which is  E*.E=|Ej|2=2((ReE)?), B*-B=2((ReB)?)
always present, no matter how small, will ultimately convert
the energy of the plasma into heat. and the energy density becomes

()

W -1 éaéﬂg oD
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II. PLASMA ENERGY DENSITY
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1 - -, plasma in the steady sta#®V/Jt=0,w;=0. It follows from
(W)=g_{((ReB)")+((ReE)?)}, (5)  Eq.(9) that the necessary and sufficient condition for a loss-
free plasma is that the dielectric tensor must be Hermitian,
which is the usual expression for the electromagnetic energyamely,&” =&. On the other hand, ib;=0, and the dielec-
density. tric tensor is not Hermitiars™ # &, then{dW/dt) gives di-
In a dispersive medium such as the electron plagmith ~ rectly the heat loss rate, i.e.,
and without external magnetic fig|dthe situation is much
more complicated. The presence of arbitrary dispersion gives _ M e P =
L S : ; ; Q iwEg-(€7—&)-Ey/l6m
rise in general to energy dissipation, i.e., a dispersive me- al s
dium is also an absorbing medium. Thus, in a dispersive
medium, energy must be supplied to maintain the collective =iw,|§3 &, Eol8m, (10)
excitations and to overcome the dissipasive losses into heat.
The building-up of the waves and the dissipative losses cafyhere#, is the anti-Hermitian part of the dielectric tensor.
be represented by fields with a complex frequency. Before For the simplest case of an isotropic dispersive medium in

evaluating the time average of E€B) for this case, let us which the dielectric tensor is a scalaf=¢4,;, Eq. (10)

note that for monochromatic plane waves one has reduces to
(A-B)=(Re(Age™'%)-Re(Boe %)) Q=iwE-Eo(—i Ime)/8m=((ReE))w, Im e/d.
1/A R* L A* R (11
=z(Ag-By +Ag -Bo)exp(2wit) (6)

. ) Equation(11) shows that the dissipatioabsorption of
with p=ot, 0=o,+io;, o,=Reo, v;=IMo. energy is determined by the imaginary partsofAccording

The rate of change of the energy density may now bgg the law of increase of entropy, the sign of these heat losses
calculated by applying Ed6) to Eq.(3). To calculate{ W) is determinate, i.eQ>0, and consequently
we note that

Q>0, Ime>0. (12
. aWE 1 - c?D > - H
(Wg)={——)= yp E-— In a loss-free plasmag™ =&, the averaged electrostatic
Jt m at energy density may be written as
:%{w*EO.DS—wES.Do}e—i(so—¢> ) W fdt<3WE> 1 fdt _ 07E*+E* 0E
:%{erg_(g+_§r).Eo at 167 ot ! I(?t
OE%x ot o\ £ 20t 1 J * 1 *
—IwiEO'(s +8)°E0}e [ (7) :Esij th(El EJ):§8”<RQE| EJ)> (13)

where&™ is the Hermitian conjugate of, .
provided the fieldE is monochromatic.
e =(E))*=¢}, It is easy to see that even for the simplest case of an
. . ] isotropic electron plasma at zero temperature for whigh
that is, the complex conjugate of the transposed matrix, and- (1 — »?/w?) s, , Eq.(13) can become negative; in fact,
where we have used the relation P .
2

1—ﬁ((ReI§)2><0 for w<
o2 w<w,. (14

éo?é6:é35+éo WEzg

Similarly, from Eq.(3) we have This unphysical result is due to the fact that so far we have

- considered only monochromatic waves of a single frequency.
IWe -{B. E —1B*.B (0 —w)exd —i(o—¢*)] As was emphasized by Landau, for strictly monochromatic
at at 470770 e fields there is no steady accumulation of electromagnetic en-

.. ergy. To remove this difficulty we therefore consider non-
=%{2wi83 -Boexp2wit)} (8) strictly monochromatic fields with frequencies in a narrow
range about the mean valug, of the carrier. Taking the

so that the time-averaged total energy density becomes Fourier transform oé(t) we have

<0W

1 N R N -
W>:E{2wi53'Bo+wiES'(g++§)'E0

E(t)ZJ dow E(w)exp —iwt), (15
+iwE}-(87—&)-Egje? i, 9 .
where E(w) is assumed to have a sharp maximumeaat
The above equation represents the rate at which energy wg.
must be supplied to build up the collective excitations and to Equation (15 may be rewritten in a more transparent
overcome the dissipative losses into heat. For a losslederm by performing a simple change of variable,
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é(t):e-‘wofJ da E(wo+ a)e 1@t=e 190tE (1),

(16)

The field amplitude in Eq(16) is now a slowly varying
function of time. Similarly the field takes the form

>

D(t)=e‘i“’0tfw da
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D(t)=j:dw§’(w)~é(w)e‘i“"

=e_i“’0tf dag(wo+a)~|§(wo+a)e_i“t. (17

Since éo(t) is assumed to be a slowly varying function of
time so thate<<w,, we can expand the dielectric tensor in a
power series ofx and retain the first term only,

|

P ,é(wo+_a)e—im

<

= —iwgtp it 98 * Ciate
=&(wg) & '“0UEp(t) +e 0&_0) . adae'""E(w+a)
0=w0q -
o a OE] JEq(t)
=&(we)-E(t)+ie Oé’_w e (18
w:wo
[
where we have used L
<WE>_Ejdt E-liwg"(w)-E*
IEX
s J (= —jate +___( fﬂj.éwt 0
_ —— lat + wEeE —_—
&tEO(t) P fﬁrxdae E(wo+ a) P at
* jate - L e 2 1% e (9|§0
=—iJ’7wadaef'“tE(w0+a). +E*. —st-E—f—(y—w(wg’).e i t_ﬁt ],
(20

D 2y _iwotaéo(t)
E—S(wo)' —iwoE(t)+e 5
+.¢95 . &EO()+ 692% I
'Ga| | Tleog e Bele
U)—(A)O
= —iwos(wo) - E+| - [0F(w)] LU
=—lwgpe(wg Toleé(e ) e
(4)—(4)0
(19

where we have neglected the tesRE,(t)/at2 which is sec-
ond order in the small frequenay. Using Eqs(16)—(19) in

where the subscript in the mean frequenoy has been
dropped.

For a loss-free plasma, the dielectric tensor is Hermitian
so that

§r =%

and

Equation(20) then reduces to

1 4 i,
<WE>:ma_w(wsij)f dtﬁ(EOiEOj)

_ 1 ﬁ(w8”)
167 dw

(EgiEoj), (21)

Eq. (4) we obtain the following expression for the electrical where we have used E(L6). Similarly, the magnetic part of

part of the electromagnetic energy density:

the total energy density may be shown to be
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(22

(Wg)= Bo| Boi -

It is to be noted that the fieldéo,éo are now slowly varying
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Combining Egs(25) and(28), we have

functions of time. The total electromagnetic energy density is 1

therefore given by

I 8ij)

* * .
(W)—l&_r B B;+ Ej o Ejl. (23
From Maxwell’'s equations we readily obtain
. C- - - - w_ -
B=—kXE, kxXB=-—%-E,
» c?
so that
Using Eq.(24) in Eq. (23), we have
W 1 ErE EFE| d(w? 8”)
( >__ w(wsij) 16mrw  Jdw
(25

We will now rewrite Eq.(25) in terms ofA, the determinant
of the operator\;; . To do this we note that

AiiEj=|n%(kj— &) + &} JE;=0,
or
n?(8; —kij)Ej=¢;;Ej,
with
kij=kik; /K2, (26)

wheren=ck/w is the plasma index of refraction.

Consider now

i(wAij)zA”+wﬂ=s”+n2(k” )+wf7A"

Jw Jw Jw

2 98 2
:8”+n (k,J—5,J)+w——2n (k” |J)
I we;;)
=n?( 8~ ki) + — = 27)
since
J
 n2_ _o9p2
awn 2n‘/ w.
It then follows from Eq.(27) that
-k * & 2
E (wA”) E w(a)sij)-l—n (5”_'(”) E]
190
=ETEJZ£(‘U28”), (28)

where we have used ER6).

W ! EFE, ! 2
W)= 167 167 wé’_w(w ij)
:16_’7TE* (wA” |E|2 w(w/\ij),
(29

where we have used the relation
Nij=N\o€ €j=NoE} Ej|E| 2

in the last step. In the above formulg is the trace of the

cofactor matrix\;; of Maxwell's operatorA;, ande; is the
polarization vector. Now
'J& (wAIJ) Nij Aij+wé,_w
I N AN
=)\iinj+w)\ij 3A w(?_w:w[?_w
(30

since for any real mode the determinate of Maxwell's opera-
tor (written in matrix notatiom vanishes, i.e.A =0, and

dA J
do MNige i
which can be easily shown by direct differentiation of
A=detAjj=Ajj\;
with respect taw. From Eqs.(29) and (30) we finally obtain

Ay,

EPwoar 1 -
L )2

167 \g do 87 No do (32)

which is the desired result.

Ill. THE VECTOR POTENTIAL

We are now ready to derive an expression for the vector
potential which is valid in a magnetoactive plasma. Such an
expression is extremely useful for astrophysical applications,
because some of the most important astrophysical quantities
such as the radiative opacities and luminosities can be calcu-
lated most conveniently in terms of the vector potential. A
knowledge of the radiative opacities is absolutely essential
for the description of the energy transfer in stellar interiors,
and, on the other hand, in order to calculate the surface tem-
perature and cooling rates of stars as well as stellar evolu-
tion, one needs to known the stellar energy-loss rates due to
the radiation of photons and neutrinos. Since most of these
radiation processes occur in a magnetized plasma, it is obvi-
ous that a general expression for the vector potential which
takes into account plasma effects is of great interest.

Turning now to the mathematical details, let us represent
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the electromagnetic field in a magnetized plasma by the four- 1 e | 1\1 w JA
potential A, (A,i¢), and choose the gauge such tigat 0. = 8nc?| 40| Yka (E) No 9@
The vector potential(X,t), which is real, can be expanded
in the form N,
=nahw=6ﬁw, (35
(S — 7 - 2\ o— i ot + I* 2\ alotaT
A(X,t) IZaE:lZ{UK,oz(X)e ak,a Ukya(x)e ak,a} which yleldS
(32)
- R 27Th2C2N 1/2 2)\0 1/2
UE,a()_()):|Ulz,a|elk.Xék,av |U|2,a|:( (ﬁw)Q ) O’IA (36)

wr?a)

whereay , and al,a are the annihilation and creation opera-

tors for a plasmon with wave vectérand direction of po- In Eq.(36), ) is the normalization volume in which there are
larization along the unit vectdg,; « denotes such a direc- N, plasmongi.e., n,=N,/Q). The subscriptr in Eq. (35

tion. The Coefﬁcien“jm is then determined by quantizing indicates that the time average is taken over one period so
the electromagnetic fields. To do this, we note that for that

plasmons per unit volume, the average energy dek¥ity)

of the radiation field is given by Ed31),

(sirg(k-X— wt)),= 1.

1 > w J
<Wa>:_<|ReEa|2>__A' . L
8m No dw The plane-wave expansion of the vector potential is therefore

~Nofo B9 Axn=3 3 NP*Iea peikieal toy
Iz a=1,2 ’

where the electric field is obtained from the vector potential

N = 2mhe?\ [ 2o\  2mh*c? 3
0 Qw ETN - Ew(l) g(w ’ ( 7)
- © 5w
E-_L7A 34
T (34)
E,=fhw, w=w(k),
From Egs.(32), (33), and(34) we have where we have assumed that there is one plasmon in the

volume Q so thatn,=(N,/Q)=(1/Q). We note that the
factor {(w) in Eq. (37) represents the effect of the plasma
whereas the factor 2(f¢)?/E, Q) is simply the vacuum
limit for the vector potential.

To illustrate the usefulness of EQ37), let us compute
{(w) for transverse waves in a nonmagnetized electron
plasma for which the Maxwell matrid;; and its associated
cofactor matrix\;; may be written as

Ak o(%1)=2|Ug o8 . cogk-X— wt)

(W,) 1<1 a(R/i>2> w oA
o) g\ 2|7 (RE

8 \c|dt P—n?cog ¢ 0 n?sin 6 cosd

IA A= 0 P-n? 0 , (39

1 - R
= - 2 I . *— — —
87707<[2|Uk'“|w] SirF(k-X— 1)), Ao dw n?singcosd¢ 0O P—n?sir? 0
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(P—n?)(P—n?sir? §) 0 (P—n?)n?sin@ cosd
Nij= 0 P(P—n?) 0 , (39
(P—n?n?sind cosé 0 (P—n?)(P—n?cog 6)

where 0 is the angle between the wave vectoand thez ~ EQuations40) and(41) are used by Adams, Ruderman, and
axis, withk, =0, i.e.,(n=ck ,P=1—(03/?)), Woo [21] for computing the neutrino energy-loss rates by
Y plasmon neutrino processes, which are important for late
stage stellar evolution. The general expressjfn) is also
> Lie applicable in a magnetoactive plasma, for instance Canuto
k=(kuOkz) =k(sin 6,0,c0s). et al. [15] have considered the photoneutrino process in a
From Eqs(38) and(39) the factor{(w) may be evaluated as Strong magnetic field and the same process in a magnetoac-
follows: tive electron plasma has been investigated by Chou, Fassio-
Canuto, and Canutf®20].
We note that in the absence of the plasma,ck/w=1

_, No  2Ti(N) and Eq.(40) gives{(w)=1 so that
fo)y=2—F="7 R
W= @A
N _277%202 B 2mhc?
or w=Eq ‘9T g,
_n2 _n2
ﬂg(w):(P n)(8P—n%) = ; which is simply the vacuum limit for the vector potential. In
2 i[P(P—nZ)Z] £+ 2_P other words, we recover the electromagnetic waves in
dw op 0 ® vacuum.
Hence
IV. THE COLLISIONLESS COLD PLASMA MODEL
2 1 2 The possible modes of excitation for a strongly magne-
Hw)=— = tized electron plasma have been investigated by several au-
® 2_P+ P 2P+w£ thors[12,29 and discussed by Canuto, Chiuderi, and Chou
®w Jw dw [18,19 in connection with the plasmon neutrino process.
5 1 This excitation frequency has also been used to compute the

_ _ , (40) photoneutrino luminosity for transverse plasmons by Chou,
2 J ., d Fassio-Canuto, and Canufg0]. To simplify our analysis,
2"+ w-—n® n-—(wn) we make few approximations to obtain explicit functional
forms for the excitation frequencies. We neglect both spatial
where we have used L’Hospital's rule and the dispersiordispersion due to electron pressure for an electron gas of

relationn®=P for transverse plasmons. arbitrary degeneracy and the effects of spin and collisions on
Similarly, for longitudinal plasmons it can be easily the dielectric tensor. The effect of spatial dispersion has been
shown that shown by Adams, Ruderman, and Wi&1] to be unimpor-

tant in the high-density regime such as the interiors of neu-
| | - | tron stars and dwarf stars, whereas the spin effects on the
Ao=Tr Njj=1, A=def(Aj)=P, dielectric tensors are negligib[&0]. In a superstrong mag-
S - . netoactive electron plasma, the cyclotron frequency is so
where the superscriptindicates longitudinal waves. In this  pian that particle correlation is due to magnetic fields rather
caseé=k and the dispersion relation is simpR=0 or @  than collisions: hence the effects of collisions on the dielec-
=w,. The factor{(w) may now be evaluated to give tric tensor can also be neglected.
We will now compute the normalization factdrprevi-
ously derived for the collisionless cold plasma model. It is

Hw)= 2_7\|o: i: w’ (41) anticipated that the normalization factor will appear in the
dA JP Zg quantum-mechanical treatment for the nonlinear interaction
e %ie between intense neutrino fluxes and a magnetoactive electron
plasma background. In view of the approximations delin-
or eated above for the plasma immersed in superstrong mag-

netic fields, we shall therefore proceed to compute the nor-
malization factor for a cold collisionless plasma model. In
{(w)=1. the notation of Sti¥31], the dielectric tensor can be written
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S —-iD O

&ij= iD S 0],

0 0 P
L L wg eB
S=3(R+L), D=}(R-L), P=1--% w=—,
(42)

2 2
. wp L Wy 2_471'Ne2
R=1 w(w—wy)’ L=1 w(w+we)’ “pT T m

whereN is the electron number density and is the plasma

frequency. The index of refraction satisfies the biquadratic

equation
An*—Bn?+C=0,

A=Ssir? §+ P cog 0,
(43

B=RLsir? +SP(1+cos 6),

C=RPL.

The solutions are given by

B+F
T 2A

2

n , F?=B?-4AC.

Equation(43) can be cast in a more transparent f¢8@,33,

P(n?—R)(n*-L)

tarr 0=~ 5 R =P

(44)
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Tr(\j)=n*~(P+A+2S)n*+RL+2PS
The general form of the polarization vecterhas been
considered by Melrose, whose result is
[CF N CTr(n) 1M

€i

The index| specifying the various modes of excitation is
implicitly contained in\; through the index of refraction; .

The constant paramete; are a set of complex numbers
with the constraint that one of them should not vanish. Let us
choose

C=(0,,0).

We then obtain after some straightforward computation
D(P—n?sir?§) —Dn?sinfcosd

sP-AnZ """ sp-An? |’
(49

&=[1+G}] 2

_ PD cosé
" sp-An?

It follows that
n*—(P+A+2S)n’+(RL+2SP)

+F !
(46)

Tr(Ni))
A/ on

HAin:()

since An’—B=*F.

Equation(46) is the desired general result for the normal-
ization factor{(w) for a cold collisionless magnetoactive
electron plasma. As previously emphasized, this factor is ex-
pected to appear in a full-fledged quantum-mechanical de-
scription for the nonlinear interaction between intense neu-
trino fluxes and stellar plasma background immersed in a

which shows that for propagation along the magnetic fieldSUPerstrong magnetic field.

6=0 we have eithen3=R for the ordinary modeD or n2
=L for the extraordinary modx. Similarly, for propagation

across the magnetic fieldf€E 7/2) we have the ordinary

mode n3=P and the extraordinary mode?=RL/S. The
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